
Journal of Mathematical Chemistry 8(1991)245-254 245 
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Abstract 

The percolation properties of randomly centered rods and spheres are studied. The 
at~roach is based on the detailed study of frequencies of cluster occurrences. For 
random rods, the analytic expressions are derived for all cluster frequencies. It is then 
shown that one-dimensional systems of random rods exhibit critical behaviour with 
Pc = ,,o, ),= 1. For randomly centered spheres, we designed a numerical method for 
calculating the cluster frequencies. The approach is based on the principles of the Monte 
Carlo method. It can cope with clusters containing up to seven particles, which should 
suffice for the evaluation of accurate values of critical density and critical exponents. 

1. Introduction 

The statistical mechanics of the gaseous and liquid state is mainly devoted 
to thermal problems. In thermal problems one tries to reveal structural and dynamical 
characteristics of the system provided that the Hamiltonian which defines the interactions 
between the particles is known. Structural characteristics are usually defined in 
terms of distribution functions. At low fluid densities, the distribution of particles 
can be interpreted in terms of clustering behaviour. The concept of clusters was 
introduced by Mayer [1] and led to a rich mathematical formalism. 

In addition to the Mayer clusters, which are of more formal character, 
Hill [2] introduced the concept of physical clusters, sets of particles which are 
physically connected by dispersion forces and do not have enough kinetic energy 
to fall apart. One can extend the definition of clusters to a proximity definition, 
where the clusters are declared to be connected if each particle within a cluster has 
at least one particle in the neighbourhood so that their separation is less than a 
certain distance. However, as soon as one accepts the proximity criterion, the 
physical basis becomes obscured because in general there is no clear-cut criterion 
to define the distance at which the particles are said to be connected. This feature 
leads to percolation problems [3] which can be superimposed on the thermal problems. 
The percolation problem is usually defined as follows: Find the threshold density 
at which the clusters begin to percolate, which means that they attain macroscopic 
extensions. Due to the fact that the definition of connectedness invokes a certain 
degree of arbitrariness, we can see that each Hamiltonian can give rise to several 
percolation problems. The simplest percolation problem can be defined for the 
simplest system: randomly centered points. The thermal problem of this system is 
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trivial because it corresponds to the ideal gas. In what follows, we shall see that 
even such a simple system defines a percolation problem of  considerable complexity. 

2. Percolation of random rods and spheres 

In order to define the percolation problem of random points in one, two, or 
three dimensions, one needs to define the minimum distance (d) at which the points 
are connected. One can consider the percolation problem to be solved when the 
percolation threshold density and the corresponding critical indices are determined. 

In order to reach this goal, one can try to determine the frequencies of  cluster 
occurrences. Let us first calculate the probability that a subvolume v will be devoid 
of  points. If v << V, then the probability for such a configuration is 1 - v/V to the 
power N. This expression can be transformed in the following way: 

P(v) = (1 - v/v)N= [(1 - v/V)V/v'Nv/V'I . (2.1) 

In the limit when v/V goes towards to zero, one can write 

P(v) = e x p ( - p v ) ,  (2.2) 

where p is the number density of  points. 
On the basis of  this result, it is not difficult to determine the cluster fre- 

quencies. The singlets are those points which are free of  neighbours within a "sphere" 
of  radius d. The volume V o of  such a "sphere" is 2d, ird 2 and 41rd3/3 in 1, 2 and 
3 dimensions, respectively. Consequently, the relative abundance of  singlets 
n I = N1/N is equal to P(v = t.½), which gives in terms of  (2.2) 

nl = exp( -pV0) .  (2.3) 

Following the same line of  argument, one can write down the expression for 
the frequency of  a p-point  cluster: 

np = ( p  p -  fd 3 r2... d 3 rp e x p ( - p v  (r  2 . . . . .  rp )). (2.4) 

Point no. 1 is supposed to be located at the origin (r 1 = 0). The integrals over 
p - 1 coordinates should run over all the configurations which do not disconnect the 
p-cluster.  The excluded volume v(r2. . ,  rp) is equal to the minimal volume, which 
should be devoid of  points other than 1 . . .  p in order to keep the cluster isolated. 

2.1. PERCOLATION OF RANDOMLY CENTERED RODS 

In one dimension, the percolation problem can be thoroughly solved. Instead 
of  random points, we can speak about random rods of  length d. Each point lies in 
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the center of. the rod, and two points are connected if the corresponding rods 
overlap. The integrals appearing in the expression for cluster frequencies can be 
solved analytically for any p, obtaining 

np(p) = e x p ( - 2 p d )  (1 - exp ( -pd ) )P -1 .  (2.1.1) 

If one introduces the fraction of occupied volume u as another density variable, 

u = 1 - e -'~p, ( 2 . 1 . 2 )  

the cluster frequencies can be expressed in even more compact form: 

np(u) = (1 - u)2u p- 1 (2.1.3) 

It is easy to calculate the mean cluster size 

(p ) = ,~_~p2np / ~ p np ; ( 2 . 1 . 4 )  

p p 

since Y:pnp = 1, one obtains 

(p) = (1 + u)/(1 - u). 

If this expression is compared with the standard form (p) ~: (u c -  u) -~, one 
immediately realizes that the percolation occurs at Uc = 1 and that the critical exponent 
7 is equal to 1. The threshold value u c = 1 means that the clusters of  randomly 
centered rods percolate when the entire volume becomes occupied, which again 
means that the number density must become infinite. 

Furthermore, in complete analogy with the one-dimensional lattice [4], one 
can also determine the critical exponents ~7 and ~, which turn out to have the values 
2 and 1, respectively. 

2.2. PERCOLATION OF RANDOMLY CENTERED SPHERES 

In three dimensions, the percolation problem of  random spheres does not 
appear as trivial as in the one-dimensional case. In the literature, one can trace three 
approaches towards the solution of this problem: integral equation techniques [5-8] ,  
computer simulation [9, 10], and series expansion [11]. In lattice percolation, the 
series expansion approach gives the most accurate results. In continuum percolation, 
the series expansion is competitive to computer simulation and turns out to be more 
efficient than integral equation approaches. In this work, we develop an alternative 
numerical method which may lead to a better understanding of continuum percolation 
in non-correlated systems. The approach is based on the evaluation of  the frequencies 
of  cluster occurrences. Haan and Zwanzig [ 11 ] developed the formalism to calculate 
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the coefficients of power series expansion of cluster frequencies in number density. 
This approach is limited by the availability of cluster integrals. For randomly centered 
spheres in three dimensions, Haan and Zwanzig succeeded in reconstructing the 
coefficients up to fourth power in density, while Given and Stell [6] discussed the 
possibilities of extending the series. However, it is not possible to proceed very far 
because the diversity of possible cluster topologies becomes excessively abundant 
beyond p = 5. It is our aim to develop a numerical procedure which will function 
beyond this point. 

For p = 2 and 3, the integrals exprcssing the cluster frequencies can be cast 
into a compact form: 

1 

21rpd 3 e x p ( - 4 r c p d 3 / 3 ) / x 2 e x p ( - l r p d 3 ( x - x 3 / 1 2 ) ) d x ,  (2.2.1) / / 2 ( / 3 )  = 

d 
0 

n3(P) = 

1 1 1 

8 ~ 2 ~ 2 d 6 f f f  6 x2dx y2dy dz 

0 0 -1 

exp( -pv  (x, y, z)) 

1 1 ! 

+ 2fx2dx f y2dy f dzexp(-pv(x,y,z)). 
0 1 -x  1- .,~2 2~y 

(2.2.2) 

v(x, y, z) is the excluded volume. The variables x, y and z refer to the distances r12, 
r23 and the cosine of the angle between the vectors r~a and r23. The methods of 
calculation of the excluded volume will be discussed in due course. If the exponential 
function in (2.2.1) and (2.2.2) is expanded in a power series in the number density 
and the integrals are carried out, one can obtain the coefficients in the density 
expansion. We checked that our results agree with the coefficients obtained by Haan 
and Zwanzig. 

For the clusters beyond p = 3, there is no simple way to evaluate the integrals 
appearing in (2.4), but one can apply the Monte Carlo method. 

The most simple and straightforward way to evaluate the integral 

1 = f d r 2  ... drp e x p ( - p v ( r 2 . . ,  rp )) (2.2.3) 

is the crude Monte Carlo method. 
According to this method, any finite-dimensional integral within finite limits 

can be evaluated as the average value of the integrand multiplied by the total 
volume of the space spanned by the integration variables. In our case, the integration 
variables are the coordinates of p -  1 points provided that one point is located at 
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the origin of the coordinate system. The integration domain should be chosen in 
such a way that no connected p-cluster topology is left out. This condition is satisfied 
when the points are located within the sphere of  radius ( p -  1)d with volume U. 
The points outside this domain can not contribute to a connected cluster. On the 
basis of  the above-mentioned arguments, (2.2.3) can be written as follows: 

1 = U p-  1 Z e-PV%" "p )/NToT • (2.2.4)  

This equation can be applied directly as it stands. One generates NTO T random p- 
tuplets, discards the disconnected clusters, calculates the excluded volume for each 
connected cluster, and performs the summation. The calculation remains feasible up 
to p = 5, but beyond this number the fraction of  connected clusters becomes too 
small and the method is no longer efficient. In order to extend the applicability of 
the method we also develoI~d a more advanced algorithm, due to which (2.2.4) is 
evaluated in two steps. In the first step, one evaluates the number N c of connected 
clusters relative to the total number NTO T of  randomly generated p-tuplets. In the 
second step, one evaluates the average (e -pv) = ~e-PffNc within the set of  connected 
clusters. The two results can be combined to obtain 

The quantity Nc/NTo T can be calculated in a computer run where random p-tuplets 
are generated and tested for connectedness. This is a fast numerical procedure and 
because it is free of  the evaluation of the excluded volume, one can afford to test 
billions of  p-tuplets using a moderate amount of computer time. 

The average (e - ~ )  can be calculated by means of the standard Metropolis 
Monte Carlo procedure used for hard body potentials with disconnected clusters 
being equivalent to the configurations with infinite potential and the connected ones 
to those with zero potential energy. One starts with an arbitrary configuration of  
points forming a connected cluster. Afterwards, one generates a sequence of random 
moves of points. If a new configuration of points represents a disconnected cluster, 
it is rejected, and the weight with which the parent configuration (the one from 
which the new configuration is derived by random moves) enters into the averaging 
procedure is incremented by 1. In the averaging procedure, the initial part of the 
sequence of  configurations should be discarded and the averaging over the productive 
run gives us (e-PV). 

As far as the determination of the excluded volume is concerned, one can use 
the analytic expressions for the volumes of  intersecting spheres up to p = 4 [13, 14]. 
For high p values, we used the following algorithm. 

For p spheres composing a connected cluster, M random points were generated, 
uniformly distributed within each sphere. For each point, the number of spheres to 
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which the point was common was determined. In this way, the counters M 1. .. M i. . .  Mp 
with Y~M i = pM were obtained. M i counts the number of points belonging to i 
spheres. The excluded volume is then given as follows: 

v(r2. . .r  p ) = 4~rd3 ( Z  Mi /i)/(3M). 

I fM was taken of the order of magnitude of  10 4, the accuracy of  v(r 2 . . .  r e) becomes 
a fraction of a percent. 

3. Results and discussion 

As the main numerical results of  this paper, we consider the cluster frequencies 
for p = 2 to 7 as a function of number density. The calculations were performed by 
means of  the crude Monte Carlo method (p = 3, 4, 5) or by the Metropolis MC 
method (p = 5, 6, 7). The ratio Nc/NTo T (see eq. (2.2.5)) was determined on the 
basis of  10 9 configurations, while the lengths of the productive runs were much 
shorter (-- 10 5) because of the time-consuming computation of  the excluded volume. 
The results are depicted in fig. 1, where also the error bars are drawn. The errors 
were estimated on the basis of scattering of the results referring to partial summations. 

On the basis of these data, we made two kinds of efforts towards the determination 
of the percolation threshold density Pc and the critical exponent ~,: 

(i) series expansion method, 

(ii) extrapolation of the peak position in np(p). 

The computational task pertaining to the series expansion method [11] is 
based on the determination of  the coefficients in the density expansion of the mean 
cluster size (see 2.1.4): 

(p) = y~a  k pk. (3.1) 

If the coefficients a~ are known, one can determine the percolation threshold density 
and the critical exponent by means of the "ratio" method or some other numerical 
aid such as Pad6 analysis. The numerical values of  the coefficients a k stem from 
the knowledge of  ne(p), which again can be expressed as a power series: 

%(p)  = pk. (3.2) 
k=0 

Combining eqs. (3.1), (2.1.4) and (3.2), one obtains 
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Fig. 1. Cluster frequencies for different cluster sizes as a function of  number density. 
Note the differences in scale factor on the ordinate axis. The maxima approach asymp- 
totically the tentative percolation threshold density at ped 3= 0.68 (see also fig. 3). 
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k + l  
a k = Z p Z b p k .  

p = l  
(3.3) 

The coefficients bpk for random spheres were evaluated by Haan and Zwanzig in 
terms of  cluster integrals for l < p < 5 and 0 < k < 4, which is exactly sufficient to 
determine the coefficients a~ for 0 < k < 4. Our results go beyond this point, as can 
be seen in fig. 1, because rip(p) are calculated up to p = 7. The results on which 
the graphs of  fig. l are based do not allow us to calculate the coefficients a k beyond 
k = 4 because the accuracy of  the data is too low. In order to obtain a 5, for example, 
eq. (3.3) tells us that one needs to know bp6, 1 < p < 6. When the summation in (3.3) 
is performed, one realizes that the terms alternate in sign and that the factor p2 
amplifies the contribution and also the error of  higher terms. We found that the 
relative uncertainty of the coefficient a 5, which was evaluated on the basis of  the 
data presented in fig. 1, is more than 50%, which means that it can not help when 
determining Pc and 7. On the other hand, the determination of  Pc and 7on  the basis 
of  a I to a 5 by the ratio method is also questionable, as can be seen in fig. 2, where 
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Fig. 2. I f  Pc is determined on the basis of  the "ratio" method, the ambiguity exists 
whether ap+ 1lap should be drawn versus 1/p or l /(p + 1). I f  only the data are 
available for low p values, the discrepancy between the two results is appreciable. 
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it is shown that the ratio method in the series expansion may give ambiguous results 
if one remains below p = 5. 

The above-mentioned drawbacks were a strong motivation to design an alternative 
numerical procedure on which basis one could quantify the percolation problem. 
This is method (ii), which exploiLs the fact that by means of the Metropolis MC 
procedure one can determine rather accurately the locations of  the maxima Pm~x(P) 
of  rip(p). If a l o g -  log plot of  the position of  the maxima relative to a tentative value 
of  Pc versus p is drawn (see fig. 3), one finds that Pc-Pmax(P) behaves as p-CO. The 
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i 

0 0.5 
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Fig. 3. In fig. 1, one can see that the maxima 
of rip(p) approach the cwitical density Pc. In order 
to quantify this feature, a log - log  plot is drawn: 
log of the distance between the maximum of 
np(p) and the tentative value of  pc (=0.68/d 3) 
versus log p. The analysis reveals the relation 
Pc--Pm,x o~ p-~O where to = 0.5 + 0.03. 

approximate value of  co is 0.5 + 0.03 and for the present we have no simple explanation 
about its origin. If we draw a diagram of Pmax(P) as a function o f p  -°5 (fig. 4), the 
intercept of  the line with the ordinate gives the value of the percolation threshold 
density pod 3 = 0.68 + 0.01. This result is consistent with the results of  the series 
expansion method [11] and simulation results. 
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Fig. 4. The location of the maxima of np(p) as a function of 1/~Jp. The extra- 
po]ation p --~ oo gives us the percolation threshold density (pod 3 = 0.68 + 0.01 ). 
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